Abstract

The four-body Yakubovsky equations in a three-dimensional approach with the inclusion of the three-body forces are proposed. The four-body bound state with two- and three-body interactions is formulated in the three-dimensional approach for identical particles as a function of vector Jacobi momenta, specifically, the magnitudes of the momenta and the angles between them. The modified three-dimensional Yakubovsky integral equations are successfully solved with the scalar two-meson exchange three-body force, where the Malfliet-Tjon-type two-body force is implemented. The three-body force effects on the energy eigenvalue and the four-body wave function, as well as accuracy of our numerical calculations are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call