Abstract

We derive bounds on vector leptoquarks coupling to the first generation, using data from low energy experiments as well as from high energy accelerators. Similarly to the case of scalar leptoquarks, we find that the strongest indirect bounds arise from atomic parity violation and universality in leptonic \ensuremath{\pi} decays. These bounds are considerably stronger than the first direct bounds of the DESY ep collider HERA, restricting vector leptoquarks that couple with electromagnetic strength to right-handed quarks to lie above 430 GeV or 460 GeV, and leptoquarks that couple with electromagnetic strength to left-handed quarks to lie above 1.3 TeV, 1.2 TeV, and 1.5 TeV for the SU(2${)}_{\mathit{W}}$ singlet, doublet, and triplet, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.