Abstract

Let $A$ be a self-adjoint operator on a Hilbert space $\fH$. Assume that the spectrum of $A$ consists of two disjoint components $\sigma_0$ and $\sigma_1$. Let $V$ be a bounded operator on $\fH$, off-diagonal and $J$-self-adjoint with respect to the orthogonal decomposition $\fH=\fH_0\oplus\fH_1$ where $\fH_0$ and $\fH_1$ are the spectral subspaces of $A$ associated with the spectral sets $\sigma_0$ and $\sigma_1$, respectively. We find (optimal) conditions on $V$ guaranteeing that the perturbed operator $L=A+V$ is similar to a self-adjoint operator. Moreover, we prove a number of (sharp) norm bounds on variation of the spectral subspaces of $A$ under the perturbation $V$. Some of the results obtained are reformulated in terms of the Krein space theory. As an example, the quantum harmonic oscillator under a PT-symmetric perturbation is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call