Abstract

In the present work the homogenization problem of periodic composites with nonlinear hyperelastic constituents and debonded frictionless interfaces is formulated as a minimum problem of the free- or complementary-energy of the unit cell of the composite over the convex set of the admissible strain or stress fields, respectively. Because of the unilateral contact condition at the debonded interfaces, the overall constitutive behavior of the composite turns out to be nonlinear even when the constituents are linearly hyperelastic. In this particular case, the homogenized free- and complementary-energy density functionals of the composite are positively homogeneous of degree two, i.e. from a mechanical point of view, the overall constitutive behavior of the composite is nonlinear conewise multimodular. Approximations of the proposed variational principles, suitable for numerical computations, are built up by adopting the finite-element method. In this way, rigorous upper bounds on the homogenized free- and complementary-energy density functionals are obtained. Then, lower bounds are derived by using the conjugacy relation between the homogenized energy density functionals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.