Abstract

While the magnetic induction equation in plasmas, governing kinematic dynamos, is a linear one admitting exponential growth of the magnetic energy for certain velocity fields, the addition of the Hall term turns it into a nonlinear parabolic equation. Local existence of solutions may be proved, but in contrast with the magnetohydrodynamics case, for a number of boundary conditions the magnetic energy grows at most linearly in time for stationary velocity fields, and like the square of the time in the general case. It appears that the Hall effect enhances diffusivity in some way to compensate for the positive contribution of the transport of the magnetic field by the flow occurring in fast dynamos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call