Abstract

We consider a generic mean-field scenario, in which a sequence of population models, described by discrete-time Markov chains (DTMCs), converges to a deterministic limit in discrete time. Under the assumption that the limit has a globally attracting equilibrium, the steady states of the sequence of DTMC models converge to the point-mass distribution concentrated on this equilibrium. In this paper we provide explicit bounds in probability for the convergence of such steady states, combining the stochastic bounds on the local error with control-theoretic tools used in the stability analysis of perturbed dynamical systems to bound the global accumulation of error. We also adapt this method to compute bounds on the transient dynamics. The approach is illustrated by a wireless sensor network example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.