Abstract

The rotor-router mechanism was introduced as a deterministic alternative to the random walk in undirected graphs. In this model, a set of k identical walkers is deployed in parallel, starting from a chosen subset of nodes, and moving around the graph in synchronous steps. During the process, each node successively propagates walkers visiting it along its outgoing arcs in round-robin fashion, according to a fixed ordering. We consider the cover time of such a system, i.e., the number of steps after which each node has been visited by at least one walk, regardless of the initialization of the walks. We show that for any graph with m edges and diameter D, this cover time is at most Θ(mD/log⁡k) and at least Θ(mD/k), which corresponds to a speedup of between Θ(log⁡k) and Θ(k) with respect to the cover time of a single walk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.