Abstract

This manuscript provides novel bounds and estimates, for the first time, on size-dependent properties of composites accounting for generalized interfaces in their microstructure, via analytical homogenization verified by computational analysis. We extend both the composite cylinder assemblage and Mori–Tanaka approaches to account for the general interface model. Our proposed strategy does not only determine the overall response of composites, but also it provides information about the local fields for each phase of the medium including the interface. We present a comprehensive study on a broad range of interface parameters, stiffness ratios and sizes. Our analytical solutions are in excellent agreement with the computational results using the finite element method. Based on the observations throughout our investigations, two notions of size-dependent bounds and ultimate bounds on the effective response of composites are introduced which yield a significant insight into the size effects, particularly important for the design of nano-composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call