Abstract
A permutation code of length n and distance d is a set Γ of permutations from some fixed set of n symbols such that the Hamming distance between each distinct x,y∈Γ is at least d. In this note, we determine some new results on the maximum size of a permutation code with distance equal to 4, the smallest interesting value. The upper bound is improved for almost all n via an optimization problem on Young diagrams. A new recursive construction improves known lower bounds for small values of n.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.