Abstract

Label corruption leads to a significant challenge in supervised learning, particularly in deep neural networks. This paper considers recovering a small corrupted subset of data samples which are typically caused by non-expert sources, such as automatic classifiers. Our aim is to recover the corrupted data samples by exploiting a finite query-testing system as an additional expert. The task involves identifying the corrupted data samples with minimal expert queries and finding them to their true label values. The proposed query-testing system uses a random selection of a subset of data samples and utilizes finite field operations to construct combined responses. In this paper, we demonstrate an information-theoretic lower bound on the minimum number of queries required for recovering corrupted labels. The lower bound can be represented as a function of joint entropy with an imbalanced rate of data samples and mislabeled probability. In addition, we find an upper bound on the error probability using maximum a posteriori decoding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call