Abstract

A dominating set D of G is a subset of V(G), such that every vertex in $$V(G){\setminus } D$$ is adjacent to at least one vertex in D. A neighborhood total dominating set, abbreviated for NTD set D, is a dominating set of G with an extra property: the subgraph induced by the open neighborhood of D, denoted by G[N(D)], has no isolated vertices. The neighborhood total domination number, denoted by $$\gamma _{nt}(G)$$ , is the minimum cardinality of an NTD set in G. A classical result of Vizing relates the size and the domination number of a graph of given order. In this paper, we present a Vizing-like result for $$\gamma _{nt}(G)$$ . Some results for $$\gamma _{nt}(G)$$ in terms of other graphic parameters, such as girth, diameter, and degree of G, are also obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.