Abstract

We study fixed points with N scalar fields in 4 − ε dimensions to leading order in ε using a bottom-up approach. We do so by analyzing O(N) invariants of the quartic coupling λijkl that describes such CFTs. In particular, we show that λiijj and {lambda}_{ijkl}^2 are restricted to a specific domain, refining a result by Rychkov and Stergiou. We also study averages of one-loop anomalous dimensions of composite operators without gradients. In many cases, we are able to show that the O(N) fixed point maximizes such averages. In the final part of this work, we generalize our results to theories with N complex scalars and to bosonic QED. In particular we show that to leading order in ε, there are no bosonic QED fixed points with N < 183 flavors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.