Abstract
For several embedded surfaces with zero self-intersection number in 4-manifolds, we show that an adjunction-type genus bound holds for at least one of the surfaces under certain conditions. For example, we derive certain adjunction inequalities for surfaces embedded in $m\mathbb{CP}^2\# n(-\mathbb{CP}^2)$ ($m, n \geq 2$). The proofs of these results are given by studying a family of Seiberg-Witten equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.