Abstract

Small nonequilibrium systems in contact with a heat bath can be analyzed with the framework of stochastic thermodynamics. In such systems, fluctuations, which are not negligible, follow universal relations such as the fluctuation theorem. More recently, it has been found that, for nonequilibrium stationary states, the full spectrum of fluctuations of any thermodynamic current is bounded by the average rate of entropy production and the average current. However, this bound does not apply to periodically driven systems, such as heat engines driven by periodic variation of the temperature and artificial molecular pumps driven by an external protocol. We obtain a universal bound on current fluctuations for periodically driven systems. This bound is a generalization of the known bound for stationary states. In general, the average rate that bounds fluctuations in periodically driven systems is different from the rate of entropy production. We also obtain a local bound on fluctuations that leads to a trade-off relation between speed and precision in periodically driven systems, which constitutes a generalization to periodically driven systems of the so called thermodynamic uncertainty relation. From a technical perspective, our results are obtained with the use of a recently developed theory for 2.5 large deviations for Markov jump processes with time-periodic transition rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.