Abstract
Parameter estimation, especially frequency estimation, from noisy observations of interference is essential in optical interferometric sensing and metrology. The Cramer-Rao bound (CRB) of such estimation determines measurement sensitivity limit. Unlike the well-studied complex sinusoids in communication theory, an optical interference signal is distinctly different in its model parameters and noise statistics. The connection between these parameters and their estimation bounds has not been well understood. Here we propose a complete, realistic multiparameter interference model corrupted by a combination of shot noise, dark noise, and readout noise. We derive the Fisher information matrix and the CRBs for all model parameters, including intensity, visibility, optical path length (frequency), and initial phase. We show that the CRBs of frequency and phase are coupled but not affected by the knowledge of intensity and visibility. Knowing the initial phase offers significant sensitivity advantage, which is verified by both theoretical derivations and numerical simulations. In addition to the complete model, a shot noise-limited case is studied, permitting the calculation of the CRBs directly from measured data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.