Abstract

The paper presents new upper and lower bounds for the singular values of rectangularmatrices explicitly involving the matrix sparsity pattern. These bounds are based on an upper bound for the Perron root of a nonnegative matrix and on the sparsity-dependent version of the Ostrowski-Brauer theorem on eigenvalue inclusion regions. Bibliography: 7 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.