Abstract
Tight lower and upper bounds for the radius of univalence of some normalized Bessel, Struve and Lommel functions of the first kind are obtained via Euler-Rayleigh inequalities. It is shown also that the radius of univalence of the Struve functions is greater than the corresponding radius of univalence of Bessel functions. Moreover, by using the idea of Kreyszig and Todd, and Wilf it is proved that the radii of univalence of some normalized Struve and Lommel functions are exactly the radii of starlikeness of the same functions. The Laguerre-Polya class of entire functions plays an important role in our study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.