Abstract

We analyze the number of payoff queries needed to compute approximate equilibria of multi-player games. We find that query complexity is an effective tool for distinguishing the computational difficulty of alternative solution concepts, and we develop new techniques for upper- and lower bounding the query complexity. For binary-choice games, we show logarithmic upper and lower bounds on the query complexity of approximate correlated equilibrium. For well-supported approximate correlated equilibrium (a restriction where a player’s behavior must always be approximately optimal, in the worst case over draws from the distribution) we show a linear lower bound, thus separating the query complexity of well supported approximate correlated equilibrium from the standard notion of approximate correlated equilibrium. Finally, we give a query-efficient reduction from the problem of computing an approximate well-supported Nash equilibrium to the problem of verifying a well supported Nash equilibrium, where the additional query overhead is proportional to the description length of the game. This gives a polynomial-query algorithm for computing well supported approximate Nash equilibria (and hence correlated equilibria) in concisely represented games. We identify a class of games (which includes congestion games) in which the reduction can be made not only query efficient, but also computationally efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call