Abstract
This paper considers the collective risk model for the insurance claims process. We will adopt a Bayesian point of view, where uncertainty concerning the specification of the prior distribution is a common question. The robust Bayesian approach uses a class of prior distributions which model uncertainty about the prior, instead of a single distribution. Relatively little research has dealt with robustness with respect to ratios of posterior expectations as occurs with the Esscher and Variance premium principles. Appropriate techniques are developed in this paper to solve this problem using the k -contamination class in the collective risk model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.