Abstract
We prove that two well-known measures of information are interrelated in interesting and useful ways when applied to nonequilibrium circumstances. A nontrivial form of the lower bound for the Fisher information measure is derived in presence of a flux vector, which satisfies the continuity equation. We also establish a novel upper bound on the time derivative (production) in terms of the arrow of time and derive a lower bound by the logarithmic Sobolev inequality. These serve as the revealing dynamics of the information content and its limitations pertaining to nonequilibrium processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.