Abstract

We consider Rayleigh–Bénard convection in a layer of fluid between rough no-slip boundaries where the top and bottom boundary heights are functions of the horizontal coordinates with square-integrable gradients. We use the background method to derive an upper bound on the mean heat flux across the layer for all admissible boundary geometries. This flux, normalized by the temperature difference between the boundaries, can grow with the Rayleigh number ($Ra$) no faster than $O(Ra^{1/2})$ as $Ra\rightarrow \infty$. Our analysis yields a family of similar bounds, depending on how various estimates are tuned, but every version depends explicitly on the boundary geometry. In one version the coefficient of the $O(Ra^{1/2})$ leading term is $0.242+2.925\Vert \unicode[STIX]{x1D735}h\Vert ^{2}$, where $\Vert \unicode[STIX]{x1D735}h\Vert ^{2}$ is the mean squared magnitude of the boundary height gradients. Application to a particular geometry is illustrated for sinusoidal boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.