Abstract

Estimating upper bounds of the spectrum of large Hermitian matrices has long been a problem with both theoretical and practical significance. Algorithms that can compute tight upper bounds with minimum computational cost will have applications in a variety of areas. We present a practical algorithm that exploits k-step Lanczos iteration with a safeguard step. The k is generally very small, say 5–8, regardless of the large dimension of the matrices. This makes the Lanczos iteration economical. The safeguard step can be realized with marginal cost by utilizing the theoretical bounds developed in this paper. The bounds establish the theoretical validity of a previous bound estimator that has been successfully used in various applications. Moreover, we improve the bound estimator which can now provide tighter upper bounds with negligible additional cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.