Abstract

We investigate the maximum size of a subset of the edges of the n -cube that does not contain a square, or 4-cycle. The size of such a subset is trivially at most 3/4 of the total number of edges, but the proportion was conjectured by Erdős to be asymptotically 1/2. Following a computer investigation of the 4-cube and the 5-cube, we improve the known upper bound from 0.62284… to 0.62256… in the limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.