Abstract
We present a method that allows the study of classical and quantum correlations in networks with causally independent parties, such as the scenario underlying entanglement swapping. By imposing relaxations of factorization constraints in a form compatible with semidefinite programing, it enables the use of the Navascués-Pironio-Acín hierarchy in complex quantum networks. We first show how the technique successfully identifies correlations not attainable in the entanglement-swapping scenario. Then we use it to show how the nonlocal power of measurements can be activated in a network: there exist measuring devices that, despite being unable to generate nonlocal correlations in the standard Bell scenario, provide a classical-quantum separation in an entanglement swapping configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.