Abstract
Let $L$ be a finite Galois extension of the number field $K$. We unconditionally bound the least prime ideal of $K$ occurring in the Chebotarev Density Theorem as a power of the discriminant of $L$ with an explicit exponent. We also establish a quantitative Deuring-Heilbronn phenomenon for the Dedekind zeta function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Functiones et Approximatio Commentarii Mathematici
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.