Abstract
The SCHOK bound states that the number of marginal deformations of certain two-dimensional conformal field theories is bounded linearly from above by the number of relevant operators. In conformal field theories defined via sigma models into Calabi-Yau manifolds, relevant operators can be estimated, in the point-particle approximation, by the low-lying spectrum of the scalar Laplacian on the manifold. In the strict large volume limit, the standard asymptotic expansion of Weyl and Minakshisundaram-Pleijel diverges with the higher-order curvature invariants. We propose that it would be sufficient to find an a priori uniform bound on the trace of the heat kernel for large but finite volume. As a first step in this direction, we then study the heat trace asymptotics, as well as the actual spectrum of the scalar Laplacian, in the vicinity of a conifold singularity. The eigenfunctions can be written in terms of confluent Heun functions, the analysis of which gives evidence that regions of large curvature will not prevent the existence of a bound of this type. This is also in line with general mathematical expectations about spectral continuity for manifolds with conical singularities. A sharper version of our results could, in combination with the SCHOK bound, provide a basis for a global restriction on the dimension of the moduli space of Calabi-Yau manifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.