Abstract

Recently, several results bounding above the diameter and/or the mean distance of a graph from its eigenvalues have been presented. They use the eigenvalues of either the adjacency or the Laplacian matrix of the graph. The main object of this paper is to compare both methods. As expected, they are equivalent for regular graphs. However, the situation is different for nonregular graphs: While no method has a definite advantage when bounding above the diameter, the use of the Laplacian matrix seems better when dealing with the mean distance. This last statement follows from improved bounds on the mean distance obtained in the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.