Abstract

We present a quantum algorithm for simulating the dynamics of a first-quantized Hamiltonian in real space based on the truncated Taylor series algorithm. We avoid the possibility of singularities by applying various cutoffs to the system and using a high-order finite difference approximation to the kinetic energy operator. We find that our algorithm can simulate η interacting particles using a number of calculations of the pairwise interactions that scales, for a fixed spatial grid spacing, as , versus the time required by previous methods (assuming the number of orbitals is proportional to η), and scales super-polynomially better with the error tolerance than algorithms based on the Lie–Trotter–Suzuki product formula. Finally, we analyze discretization errors that arise from the spatial grid and show that under some circumstances these errors can remove the exponential speedups typically afforded by quantum simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.