Abstract

This article presents a bounding surface model for unsaturated soils by using skeleton stress and bonding variable based on microcosmic pore structure as constitutive variables. A Hydraulic hysteresis soil-water characteristic curve model considering deformation and hydraulic hysteresis is combined to achieve hydraulic coupling. The proposed model can capture the change of the inter-particles bonding effect in the deformation process of unsaturated soils and accurately predict the hydraulic mechanical behavior of unsaturated soils under complicated loading paths and wetting-drying cycles. The validity of the proposed model is confirmed by the results of unsaturated isotropic compression tests, wetting-drying cycles tests and unsaturated triaxial shear tests reported in the literature.

Highlights

Read more

Summary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.