Abstract

Static timing analyzers need to know the minimum and maximum number of iterations associated with each loop in a real time program so accurate timing predictions can be obtained. The paper describes three complementary methods to support timing analysis by bounding the number of loop iterations. First, an algorithm is presented that determines the minimum and maximum number of iterations of loops with multiple exits. Second, the loop invariant variables on which the number of loop iterations depends are identified for which the user can provide minimum and maximum values. Finally, a method is given to tightly predict the execution time of loops whose number of iterations is dependent on counter variables of outer level loops. These methods have been successfully integrated in an existing timing analyzer that predicts the performance for optimized code on a machine that exploits caching and pipelining. The result is tighter timing analysis predictions and less work for the user.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.