Abstract

We consider the problem of minimizing a sum of non-convex functions over a compact domain, subject to linear inequality and equality constraints. Approximate solutions can be found by solving a convexified version of the problem, in which each function in the objective is replaced by its convex envelope. We propose a randomized algorithm to solve the convexified problem which finds an $$\epsilon $$∈-suboptimal solution to the original problem. With probability one, $$\epsilon $$∈ is bounded by a term proportional to the maximal number of active constraints in the problem. The bound does not depend on the number of variables in the problem or the number of terms in the objective. In contrast to previous related work, our proof is constructive, self-contained, and gives a bound that is tight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.