Abstract
We deal with not necessarily additive functions acting on complete orthomodular posets and taking values in Hausdorff uniform spaces, where no algebraic structure is required. As a consequence, neither pseudo-additivity, nor monotonicity are meaningful notions in this setting. Conditions ensuring their boundedness are exhibited in terms of some mild continuity properties. Such conditions are satisfied, in particular, by completely additive measures on projection lattices of von Neumann algebras. Hence, among other things, our main result provides a version in the generalized nonadditive quantum setting of the so-called boundedness principle in classical and quantum measure theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.