Abstract

Let(X,d,μ)be a metric measure space satisfying the upper doubling condition and geometrically doubling condition in the sense of Hytönen. The aim of this paper is to establish the boundedness of commutatorMbgenerated by the Marcinkiewicz integralMand Lipschitz functionb. The authors prove thatMbis bounded from the Lebesgue spacesLp(μ)to weak Lebesgue spacesLq(μ)for1≤p<n/β, from the Lebesgue spacesLp(μ)to the spacesRBMO(μ)forp=n/β, and from the Lebesgue spacesLp(μ)to the Lipschitz spacesLip(β-n/p)(μ)forn/β<p≤∞. Moreover, some results in Morrey spaces and Hardy spaces are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.