Abstract

In this paper we consider the initial Neumann boundary value problem for a degenerate Keller—Segel model which features a signal-dependent non-increasing motility function. The main obstacle of analysis comes from the possible degeneracy when the signal concentration becomes unbounded. In the current work, we are interested in the boundedness and exponential stability of the classical solution in higher dimensions. With the aid of a Lyapunov functional and a delicate Alikakos—Moser type iteration, we are able to establish a time-independent upper bound of the concentration provided that the motility function decreases algebraically. Then we further prove the uniform-in-time boundedness of the solution by constructing an estimation involving a weighted energy. Finally, thanks to the Lyapunov functional again, we prove the exponential stabilization toward the spatially homogeneous steady states. Our boundedness result improves those in [1] and the exponential stabilization is obtained for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call