Abstract
This paper focuses on boundedness and closedness of linear relations, which include both single-valued and multi-valued linear operators. A new (single-valued) linear operator induced by a linear relation is introduced, and its relationships with other two important induced linear operators are established. Several characterizations for closedness, closability, bundedness, relative boundedness and boundedness from below (above) of linear relations are given in terms of their induced linear operators. In particular, the closed graph theorem for linear relations in Banach spaces is completed, and stability of closedness of linear relations under bounded and relatively bounded perturbations is studied. The results obtained in the present paper generalize the corresponding results for single-valued linear operators to multi-valued linear operators, and some improve or relax certain assumptions of the related existing results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.