Abstract
In order to investigate bounded traveling waves of the Burgers–Huxley equation, bifurcations of codimension 1 and 2 are discussed for its traveling wave system. By reduction to center manifolds and normal forms we give conditions for the appearance of homoclinic solutions, heteroclinic solutions and periodic solutions, which correspondingly give conditions of existence for solitary waves, kink waves and periodic waves, three basic types of bounded traveling waves. Furthermore, their evolutions are discussed to investigate the existence of other types of bounded traveling waves, such as the oscillatory traveling waves corresponding to connections between an equilibrium and a periodic orbit and the oscillatory kink waves corresponding to connections of saddle–focus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.