Abstract
We show that in 3-dimensional ideal magnetohydrodynamics there exist infinitely many bounded solutions that are compactly supported in space-time and have non-trivial velocity and magnetic fields. The solutions violate conservation of total energy and cross helicity, but preserve magnetic helicity. For the 2-dimensional case we show that, in contrast, no nontrivial compactly supported solutions exist in the energy space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.