Abstract

In this paper we study the following abstract second order differential equation with dissipation in a Hilbert space H: u″+cu′+dA u+kG(u)=P(t), u∈H, t∈R, where c, d and k are positive constants, G:H→H is a Lipschitzian function and P:R→H is a continuous and bounded function. A:D(A)⊂H→H is an unbounded linear operator which is self-adjoint, positive definite and has compact resolvent. Under these conditions we prove that for some values of d, c and k this system has a bounded solution which is exponentially asymptotically stable. Moreover; if P(t) is almost periodic, then this bounded solution is also almost periodic. These results are applied to a very well known second order system partial differential equations; such as the sine-Gordon equation, The suspension bridge equation proposed by Lazer and McKenna, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.