Abstract

The notion of spectrum for first-order properties introduced by J. Spencer for Erdős–Rényi random graph is considered in relation to random uniform hypergraphs. In this work we study the set of limit points of the spectrum for first-order formulae with bounded quantifier depth and obtain bounds for its maximum value. Moreover, we prove zero–one k-laws for the random uniform hypergraph and improve the bounds for the maximum value of the spectrum for first-order formulae with bounded quantifier depth. We obtain that the maximum value of the spectrum belongs to some two-element set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.