Abstract
F≤ is a typed λ-calculus with subtyping and bounded second-order polymorphism. First introduced by Cardelli and Wegner, it has been widely studied as a core calculus for type systems with subtyping. We use a reduction from the halting problem for two-counter Turing machines to show that the subtyping and typing relations of F≤ are undecidable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.