Abstract

Eliminating concurrency errors is increasingly important as systems rely more on parallelism for performance. Exhaustively exploring the state-space of a program's thread interleavings finds concurrency errors and provides coverage guarantees, but suffers from exponential state-space explosion. Two prior approaches alleviate state-space explosion. (1) Dynamic partial-order reduction (DPOR) provides full coverage and explores only one interleaving of independent transitions. (2) Bounded search provides bounded coverage by enumerating interleavings that do not exceed a bound. In particular, we focus on preemption-bounding. Combining partial-order reduction with preemption-bounding had remained an open problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.