Abstract
This paper presents an improved spatial differencing practice for the discrete ordinates form of the radiative transport equation (RTE). Several Bounded, high resolution (HR) schemes are applied to the primitive variable form of the RTE in a finite volume context. These schemes provide high accuracy while removing non-physical oscillations that are characteristic of the diamond difference scheme. A defect correction technique is applied to solve the equations that result from the high-order operators. Predictions from the HR schemes are compared to those of the conventional step and diamond difference schemes for a number of two-dimensional enclosures with gray walls and either absorbing or isotropically scattering media. Accuracy, stability, and effects on convergence are addressed for the different schemes. The HR schemes were found to provide both accuracy and boundedness at modest computational costs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.