Abstract
We introduce a new game-theoretic semantics (GTS) for the modal mu-calculus. Our so-called bounded GTS replaces parity games with alternative evaluation games where only finite paths arise; infinite paths are not needed even when the considered transition system is infinite. The novel games offer alternative approaches to various constructions in the framework of the mu-calculus. While our main focus is introducing the new GTS, we also consider some applications to demonstrate its uses. For example, we consider a natural model transformation procedure that reduces model checking games to checking a single, fixed formula in the constructed models. We also use the GTS to identify new alternative variants of the mu-calculus, including close variants of the logic with PTime model checking; variants with iteration limited to finite ordinals; and other systems where the semantic or syntactic specification of the mu-calculus has been modified in a natural way suggested by the GTS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.