Abstract
In this paper we present a procedure for the evaluation of bounds on the parameters of Hammerstein systems, from output measurements affected by bounded errors. The identification problem is formulated in terms of polynomial optimization, and relaxation techniques, based on linear matrix inequalities, are proposed to evaluate parameter bounds by means of convex optimization. The structured sparsity of the formulated identification problem is exploited to reduce the computational complexity of the convex relaxed problem. Analysis of convergence properties and computational complexity is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.