Abstract
Efficient communication in wireless networks is typically challenged by the possibility of interference among several transmitting nodes. Much important research has been invested in decreasing the number of collisions in order to obtain faster algorithms for communication in such networks. This paper proposes a novel approach for wireless communication, which embraces collisions rather than avoiding them, over an additive channel. It introduces a coding technique called Bounded-Contention Coding (BCC) that allows collisions to be successfully decoded by the receiving nodes into the original transmissions and whose complexity depends on a bound on the contention among the transmitters. BCC enables deterministic local broadcast in a network with \(n\) nodes and at most \(a\) transmitters with information of \(\ell \) bits each within \(O(a\log {n}+a\ell )\) bits of communication with full-duplex radios, and \(O((a\log {n}+a\ell )(\log {n}))\) bits, with high probability, with half-duplex radios. When combined with random linear network coding, BCC gives global broadcast within \(O((D+a+\log {n})(a\log {n}+\ell ))\) bits, with high probability. This also holds in dynamic networks that can change arbitrarily over time by a worst-case adversary. When no bound on the contention is given, it is shown how to probabilistically estimate it and obtain global broadcast that is adaptive to the true contention in the network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.