Abstract

PurposeThe purpose of this paper is to evaluate design performance of 51 gear shaping machines by using data envelopment analysis (DEA).Design/methodology/approachExisting studies extend traditional DEA by handling bounded and discrete data based on envelopment models. However, value judgment is usually neglected and fail to be incorporated in these envelopment models. In many cases, there is a need for prior preferences. Using existing DEA approaches as a backdrop, the current paper presents a methodology for incorporating assurance region (AR) restrictions into DEA with bounded and discrete data, i.e. the assurance region bounded discrete (AR-BD) DEA model. Then, the AR-BD DEA model is combined with a context-dependent DEA to obtain an efficiency stratification.FindingsThe authors examine different AR restrictions and calculate efficiency scores of five scenarios of AR restrictions by using the proposed AR-BD DEA model. It shows that AR restrictions have a great impact on the efficiency scores. The authors also identify nine efficient frontiers in total. For each decision-making unit, it could set benchmarks and improve its performance based on each higher efficient frontier.Originality/valueThis paper first evaluates efficiency of gear shaping machines by considering different (bounded and discrete) variable types of data and including AR restrictions. The AR-BD DEA model and context-dependent AR-BD DEA model proposed in this paper further enrich the DEA theory. The findings in this paper certainly provide useful information for both producers and consumers to make smart decisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.