Abstract

In this paper, we study an analogue of the Gellerstedt problem for a loaded parabolic-hyperbolic equation of the third order in an infinite three-dimensional domain. The main method to study this Gellerstedt problem is the Fourier transform. Based on the Fourier transform, we reduce the considering problem to a planar analogue of the Gellerstedt spectral problem with a spectral parameter. The uniqueness of the solution of this problem is proved by the new extreme principle for loaded third-order equations of the mixed type. The existence of a regular solution of the Gellerstedt spectral problem is proved by the method of integral equations. In addition, the asymptotic behavior of the solution of the Gellerstedt spectral problem is studied for large values of the spectral parameter. Sufficient conditions are found such that all differentiation operations are legal in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.