Abstract

The purpose of the present paper is to investigate the structure of the laminar–turbulent transition region for the three-dimensional boundary layer along a 30° cone rotating in external axial flow. Spiral vortices, which were assumed as small disturbances in the present stability analysis, are observed experimentally in the transition region. The process of transition to a turbulent boundary layer is visualized in detail. When the ratio of rotational speed to external axial flow is increased, the critical and transition Reynolds numbers decrease remarkably. The spiral angle and the number of vortices appearing on the cone decrease as the rotational speed ratio is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.