Abstract

This paper presents experimental results documenting the effects of surface roughness and free-stream turbulence on boundary-layer transition. The experiments were conducted on a flat surface, upon which a pressure distribution similar to those prevailing on the suction side of low-pressure turbine blades was imposed. The test matrix consists of five variations in the roughness conditions, at each of three free-stream turbulence intensities (approximately 0.5%, 2.5%, and 4.5%), and two flow Reynolds numbers of 350,000 and 470,000. The ranges of these parameters considered in the study, which are typical of low-pressure turbines, resulted in both attached-flow and separation-bubble transition. The focus of the paper is on separation-bubble transition, but the few attached-flow test cases that occurred under high roughness and free-stream turbulence conditions are also presented for completeness of the test matrix. Based on the experimental results, the effects of surface roughness on the location of transition onset and the rate of transition are quantified, and the sensitivity of these effects to free-stream turbulence is established. The Tollmien–Schlichting instability mechanism is shown to be responsible for transition in each of the test cases presented. The root-mean-square height of the surface roughness elements, their planform size and spacing, and the skewness (bias towards depression or protrusion roughness) of the roughness distribution are shown to be relevant to quantifying the effects of roughness on the transition process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.