Abstract

The free convective heat transfer to the power-law non-Newtonian flow from a vertical plate in a porous medium saturated with nanofluid under laminar conditions is investigated. It is considered that the non-Newtonian nanofluid obeys the mathematical model of power-law. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The partial differential system governing the problem is transformed into an ordinary system via a usual similarity transformation. The numerical solutions of the resulting ordinary system are obtained. These solutions depend on the power-law index n, Lewis number Le, buoyancy-ratio number Nr, Brownian motion number Nb, and thermophoresis number Nt. For various values of n and Le, the effects of the influence parameters on the fluid behavior as well as the reduced Nusselt number are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call